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ABSTRACT: We present and evaluate a deep learning first-guess front-identification system that identifies cold, warm,
stationary, and occluded fronts. Frontal boundaries play a key role in the daily weather around the world. Human-drawn
fronts provided by the National Weather Service’s Weather Prediction Center, Ocean Prediction Center, Tropical Analysis
and Forecast Branch, and Honolulu Forecast Office are treated as ground-truth labels for training the deep learning mod-
els. The models are trained using ERA5 data with variables known to be important for distinguishing frontal boundaries,
including temperature, equivalent potential temperature, and wind velocity and direction at multiple heights. Using a
250-km neighborhood over the contiguous U.S. domain, our best models achieve critical success index scores of 0.60
for cold fronts, 0.43 for warm fronts, 0.48 for stationary fronts, 0.45 for occluded fronts, and 0.71 using a binary classifi-
cation system (front/no front), whereas scores over the full unified surface analysis domain were lower. For cold and
warm fronts and binary classification, these scores significantly outperform prior baseline methods that utilize 250-km
neighborhoods. These first-guess deep learning algorithms can be used by forecasters to locate frontal boundaries
more effectively and expedite the frontal analysis process.

SIGNIFICANCE STATEMENT: Fronts are boundaries that affect the weather that people experience daily. Cur-
rently, forecasters must identify these boundaries through manual analysis. We have developed an automated machine
learning method for detecting cold, warm, stationary, and occluded fronts. Our automated method provides forecasters
with an additional tool to expedite the frontal analysis process.
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1. Introduction

Identifying frontal boundaries, or boundaries between air
masses, is important as fronts can lead to the creation of
hazardous weather conditions for a variety of end users
(Schultz and Vaughan 2011; Maddox et al. 1980; Childs and
Schumacher 2019). The National Weather Service (NWS)
forecasts fronts over much of the western Northern Hemi-
sphere, spanning from the Pacific Ocean to the Atlantic, and
extending to the edge of Europe. The NWSWeather Prediction
Center (WPC), Ocean Prediction Center (OPC), Tropical
Analysis and Forecast Branch (TAFB), and Honolulu Forecast
Office (HFO) release real-time weather analysis maps ev-
ery 6 h over this full domain to facilitate forecasting for
end users ranging from ocean-going vessels to weather
forecast offices. Frontal analysis is currently performed by
hand, where forecasters use their best interpretations of a
variety of data sources to draw lines on the leading edges
of the fronts’ thermal and wind gradients. In this work, we
take a step toward creating an automated machine learning
product that will provide real-time first-guess guidance to

the human forecasters. The goal of this work is to signifi-
cantly reduce the workload of the human forecasters, free-
ing them to focus on other decision support tasks.

The approach developed here builds on the work of
Lagerquist et al. (2019), who used a convolutional neural
network (CNN; Lecun et al. 1998), a type of deep learning algo-
rithm, to identify warm and cold fronts over the contiguous
United States (CONUS). While Lagerquist et al. (2019) used a
standard CNN architecture with an output of class probabilities
for just one pixel, we used the UNet 31 architecture (Huang
et al. 2020), a more complex model structure that utilizes image
segmentation to output an entire image of pixelwise predic-
tions. The ability to generate one image with pixelwise predic-
tions as opposed to entirely separate predictions for each pixel
in the image drastically reduces the computational resources
and time needed to generate predictions across larger domains,
helping to meet time-sensitive operational needs. In addition to
saving time and resources, the UNet 31 contains a variety
of “skip connections” that help to retain features that may be
lost in deeper levels of the model where image sizes can be
much smaller than the original input. Using a deep UNet 31
architecture, we aimed to extract features that can assist with
the identification of four types of frontal boundaries: cold,
warm, stationary, and occluded.

Frontal boundaries are baroclinic zones that separate two
air masses and are identified with a distinct thermal gradient
(Renard and Clarke 1965). In general, frontal boundaries are
associated with up to 90% of extreme precipitation events in
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the midlatitudes of the Northern Hemisphere (Catto and
Pfahl 2013), and different frontal types can create various haz-
ards. For example, as a cold front propagates it forces the
warmer air ahead of the boundary to rise, creating conditions
ideal for convective development (Smith and Reeder 1988;
Hobbs et al. 1990; Catto and Pfahl 2013) and secondary fron-
tal cyclogenesis (Zhang et al. 1999). Frontal boundaries are
also areas of enhanced relative vorticity, and in eastern Colo-
rado this vorticity helps to generate landspout tornadoes in
developing thunderstorms along stationary fronts (Childs and
Schumacher 2019). Supercell thunderstorms can become tor-
nadic when interacting with a front, where relative vorticity is
also enhanced (Maddox et al. 1980; Markowski et al. 1998).
Occluded fronts form when a cold front runs into a warm
front and are associated with enhanced precipitation bands
(Schultz and Vaughan 2011).

Different analysts have numerous ways of interpreting
surface data when drawing frontal boundaries. Renard and
Clarke (1965) showed that the variety of interpretations affects
the decisions of the forecasters around the globe by gathering
analyses from 16 international and national weather centers
that contained the location of fronts for the same time step. It
was determined that the placement of frontal boundaries
could differ by as much as 300 n mi (;555 km) between fore-
cast offices. Uccellini et al. (1992) showed the disagreement
that can exist among forecasters through a surface analysis by
participants at a National Meteorological Center workshop.
Cold fronts usually have significant thermal gradients and
wind shifts, whereas a warm front is less likely to show such a
significant gradient or wind shift. Sanders (1999) suggested
that wind shifts without stark temperature gradients should
not be plotted as fronts but rather baroclinic troughs. Stationary
fronts are often associated with wind convergence and the
presence of an occluded front can be identified with the verti-
cal stacking of geopotential heights. However, if these identi-
fiers are difficult to establish or not significant enough, this can
mean that fronts are sometimes not analyzed by forecasters.
Machine learning methods could be used to shrink this gap in
uncertainty and provide more objectively based predictions;
however, the human labels used to train such methods are sub-
jective and may influence the resulting models.

Numerical frontal analysis (NFA) methods provide the ad-
vantage of removing human subjectivity in the identification of
frontal boundaries, but the process of selecting the rules for
each of the methods is subjective in nature. Berry et al. (2011)
used the field of wet-bulb potential temperature uw at the
850-hPa level to locate frontal boundaries. Berry et al. (2011)
found that using uw at this level results in fronts associated with
pressure troughs, a feature commonly found near frontal bound-
aries. Simmonds et al. (2012) used the change in 10-m wind
over the course of 6 h (in our case, two time steps) to locate
fronts. Wind shifts are generally located near pressure troughs
due to the changing orientation of the isobars, and results from
the uw method used by Berry et al. (2011) support the idea of
using wind shifts to locate fronts. Schemm et al. (2015) used gra-
dients of equivalent potential temperature uE at the 850-hPa
level along with the same wind shift method implemented by
Simmonds et al. (2012) to identify frontal boundaries. Schemm

et al. (2015) decided to use uE instead of uw as they claim uE
gradients are able to better separate air masses of differing ther-
modynamic characteristics. Hewson (1998) developed a thermal
gradient method that builds upon the work of Renard and
Clarke (1965) and defines three types of fronts of varying com-
plexity, with a “type 1” front being a straight boundary without
a thermal gradient parallel to the front, a “type 2” front being a
straight boundary with a thermal gradient parallel to the front,
and a “type 3” front being a curved boundary that may or may
not have a thermal gradient parallel to the front.

Schemm et al. (2015) compared the wind shift method from
Simmonds et al. (2012) and the thermal method from Hewson
(1998) to attribute strengths and weaknesses to each method; the
wind shift method was not able to reliably locate warm fronts
but succeeded in locating cold fronts. However, the wind shift
method alone was unable to discern between cold and warm
fronts. Schemm et al. (2015) also found that fronts identified by
the thermal method typically had a larger zonal component,
while those identified by the wind shift method had more of a
meridional orientation. Hope et al. (2014) compared six frontal
detection methods to study winter rainfall over the central
wheatbelt of the southwest of Western Australia}wind shifts,
temperature gradients, and uW gradients at 850 hPa, as well as
a self-organizing map, a manual synoptic technique, and a
“pattern matching” method that involved using data from man-
ual synoptic analyses to produce mean patterns for individual
types of fronts; they noted that wind shifts at 850 hPa revealed
a frontal count time series that had the highest correlation with
rainfall, while temperature and uW gradients at 850 hPa pro-
duced the largest number of fronts across all days analyzed.
Thomas and Schultz (2019) found that fronts defined with po-
tential temperature u resulted in climatologies with larger sea-
sonal variations in frontal frequency over continents in the
Northern Hemisphere than climatologies defined by other ther-
modynamic quantities. These methods only focus on a few vari-
ables and their rates of change with space and time, so they do
not fully capture the cohesive vertical structures of the atmo-
sphere. This is one of the motivations for research into new
methods for frontal detection, particularly with machine learn-
ing algorithms.

We build on prior work on developing deep learning ap-
proaches for frontal identification. Supervised deep learning al-
gorithms automatically learn how to recognize features within
provided input data and require minimal human intervention
outside of the initial setup of the algorithm, removing much of
the subjectivity associated with human-created rules for objec-
tive methods like those described above and returning more
consistent answers. Lagerquist et al. (2019) trained CNNs to de-
tect cold and warm fronts by using a combination of thermody-
namic variables at the surface and various pressure levels. Biard
and Kunkel (2019) trained a 2D CNN with fields of tempera-
ture, specific humidity, pressure, and zonal and meridional wind
velocities as input. Their CNN was able to detect up to 90% of
analyzed fronts over North America for the 2003–15 period.
Recent work by Niebler et al. (2022) showed success in de-
tecting cold, warm, stationary, and occluded fronts using a
2D U-Net (Ronneberger et al. 2015). Niebler et al. (2022)
trained on nine pressure levels with five input variables; the
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variables were the same as Biard and Kunkel (2019) but with
pressure replaced with vertical velocity. In our approach to au-
tomated frontal detection, we use the UNet 31 architecture
(Huang et al. 2020), a successor of the U-Net that utilizes a
more complex structure to extract features from an input image.
We trained UNet 31 models with 2D and 3D convolution ker-
nels to see which model structure (if any) would be superior.

We use three sets of CNNs implementing the UNet 31
architecture to predict frontal boundaries. More specifically,
one model set predicts the locations of cold and warm fronts,
another predicts the locations of stationary and occluded fronts,
and the third set simply predicts the locations of any of the four
types of fronts via binary classification. In the case of the third
set, every cold, warm, stationary, and occluded front is labeled
as a “front” rather than using the conventional labels. Assign-
ing the same label to all boundaries allows the models to locate
fronts more easily by generalizing all gradients associated with
the four frontal types, analogous to earlier frontal detection
methods that were not type specific (e.g., Berry et al. 2011;
Schemm et al. 2015; Simmonds et al. 2012), but does not allow
the models to classify the type of front. This is the motivation
behind the setups that classify individual frontal types; classifying
the type of front can reduce the time needed for operational
forecasters to determine what type of front to draw.

2. Data and methods

a. Data preprocessing

1) PREDICTOR VARIABLES

The predictor variables come from ERA5 data (Hersbach
et al. 2018) provided by the European Centre for Medium-
Range Weather Forecasts on a 0.258 3 0.258 grid at 3-h time

steps (0000, 0300, … , 2100 UTC) for the period 2008–20. We
accessed the Climate Data Store to gather data for predictor
variables listed in Table 1. Geopotential height and pressure
were chosen because troughs can be used to locate baroclinic
zones at the surface (Payer et al. 2011). The u wind and y

wind were chosen because previous studies support the idea
of using wind shifts to locate frontal boundaries (Berry et al.
2011; Schemm et al. 2015; Simmonds et al. 2012; Schultz
2005), and a wind shift collocated with a temperature gradient
can confirm the presence of a boundary separating two air
masses (Schultz 2005). Dewpoint and specific humidity can
help to reveal moisture gradients that aid in the identification
of warm fronts in the eastern Pacific (Lagerquist et al. 2020),
which is partially covered by our CONUS domain [see section
2a(2) below].

Using the variables from Table 1, we calculated variables
listed in Table 2 (Bolton 1980; Davies-Jones 2008; Stull 2011);
uE was added because Schemm et al. (2015) found it to be
useful in locating warm fronts, and the finding by Berry et al.
(2011) that most thermodynamic fields were able to produce
reasonable results against manual synoptic analyses motivated
us to calculate the remaining predictor variables (60 variables
total). The collinearity between many of the variables allows
us to leverage the nonlinearities in the UNet 31 created by
the activation functions, which are functions within convolu-
tional layers that transform a given input or set of inputs, usu-
ally a sum of weighted inputs, to generate an output known as
a feature map (Chase et al. 2022). However, the inputs to the
activation functions in our U-Nets are sets of normalized fea-
ture maps (see the UNet 31 architecture in section 2b).

2) FRONTAL OBJECTS

Data for frontal boundaries, which are treated as the
ground truth for the deep learning models, were generated by
forecasters at the WPC, OPC, TAFB, and HFO offices
(NOAA 2023). The WPC and TAFB datasets contain fronts
across North America, including the CONUS, and are gener-
ated every 3 h at the same time steps as the retrieved ERA5
datasets for thermodynamic variables. The unified surface
analyses are generated at synoptic hours (0000, 0600, 1200,
and 1800 UTC) and encompass a domain whose extent ranges
from the equator to 808N and from 1308E eastward to 108E
(Fig. 1). The unified surface analysis domain contains fronts
drawn by forecasters from the four offices listed above and
covers a much larger portion of the Northern Hemisphere than

TABLE 1. Variables provided in the ERA5 datasets.

Variable Heights/levels

Geopotential
height

1000, 950, 900, and 850 hPa

Temperature 2 m AGL and 1000, 950, 900, and 850 hPa
Dewpoint

temperature
2 m AGL

Specific humidity 1000, 950, 900, and 850 hPa
Surface pressure Surface
u wind 10 m AGL and 1000, 950, 900, and 850 hPa
y wind 10 m AGL and 1000, 950, 900, and 850 hPa

TABLE 2. Variables calculated from the provided variables in Table 1.

Variable Heights/levels

Dewpoint temperature 1000, 950, 900, and 850 hPa
Equivalent potential temperature 2 m AGL and 1000, 950, 900, and 850 hPa
Mixing ratio 2 m AGL and 1000, 950, 900, and 850 hPa
Relative humidity 10 m AGL and 1000, 950, 900, and 850 hPa
Specific humidity 2 m AGL
Virtual temperature 2 m AGL and 1000, 950, 900, and 850 hPa
Wet-bulb temperature 2 m AGL and 1000, 950, 900, and 850 hPa
Wet-bulb potential temperature 2 m AGL and 1000, 950, 900, and 850 hPa
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the Coded Surface Bulletin (National Weather Service 2019)
used in automated front-detection methods from Niebler et al.
(2022) and Lagerquist et al. (2019). Using a larger domain pro-
vided the opportunity to train our models on fronts with more
variability in the predictor variables.

A limitation of the data in this format is that the fronts are
marked vertices along the drawn boundaries, and these vertices
may be separated by several hundred kilometers. To create
more continuous frontal boundaries, we interpolated these
points every 25 km and translated the interpolated fronts to a
0.258 3 0.258 grid to match the grid of the ERA5 data. The in-
terpolation process started with translating the coordinates of
the vertices to an x/y grid using the haversine great circle for-
mula, where the components of the resulting vertices had units
of kilometers. Points were then added in 25-km increments
along straight lines connecting pairs of the original vertices and

translated back to a latitude–longitude coordinate system by in-
verting the haversine formula. As infinitely thin fronts are physi-
cally inconsistent with the atmospheric process (Sanders 1999),
we expanded the interpolated fronts by 25 km in all directions.
Expanding the fronts provided the models with a larger area to
identify various hypergradients and helped to alleviate any data
displacements that resulted from the ERA5 data assimilation
process or inconsistencies in the locations of analyzed frontal
boundaries. 3D labels were created for our 3D models by taking
the interpolated fronts and duplicating their locations at every
pressure level to help the 3D models identify features above the
surface.

The CONUS datasets have a domain that ranges from 258
to 56.758N and from 1328 to 60.258W (Fig. 1), which works out
to 288 3 128 pixels on the 0.258 3 0.258 grid. We designed
our models for images with sizes of 128 3 128, so there are
161 unique images that can be subsampled from each CONUS
dataset. Fronts from WPC and TAFB are included in our
CONUS datasets.

Another challenge that we faced with the frontal objects was
dealing with the varying sample sizes of the frontal types (see
Table 3). Although there is an increase in the size or number of
the fronts over time, the change is relatively small and it is un-
known as to why these increases in sample sizes are observed as
the forecast offices do not monitor the amount of fronts being
analyzed. Figure 2 shows the climatology of all fronts in our
data; cold fronts were the most common frontal type, followed
by stationary, warm, and occluded fronts. Figure 2 also shows
cutoffs in frontal frequencies that mark the boundaries between
the offices’ individual domains. We discuss how we handle these
boundaries during training in the section on model structure
and hyperparameters (section 2c). To prevent models from be-
coming too biased toward the “no front” category, we did not
train the models on images that had fewer than five pixels with
frontal boundaries. The dropped images accounted for approxi-
mately 5% of the training and validation datasets.

b. UNet 31 architecture

The UNet 31 is a CNN designed by Huang et al. (2020) for
image segmentation. The UNet 31 builds upon the U-Net
(Ronneberger et al. 2015) and the UNet11 (Zhou et al.
2018) by adding more connections while at the same time re-
ducing the number of parameters in the model. Details on
these connections can be found later in this section.

FIG. 1. The (top) CONUS domain ranges from 258 to 56.758N
and from 1328 to 60.258W, and the (bottom) unified surface analysis
domain ranges from the equator to 808N and from 1308E eastward
to 108E. The domains are shown with fronts from the unified surface
analysis plotted on top of mixing ratio at 2 m AGL at 1800 UTC
20 May 2019.

TABLE 3. Datasets and frontal counts for the models across the CONUS domain. The frontal sample sizes represent the percent of
pixels containing each specific frontal type after the interpolated fronts have been expanded by 25 km.

Model frontal types Dataset (yr) Images No front Cold Warm Stationary Occluded

Cold and warm Training (2008–16) 3 600 121 98.75% 0.96% 0.29% } }

Validation (2017–18) 825 930 98.55% 1.10% 0.34% } }

Test (2019–20) 941 528 98.12% 1.41% 0.47% } }

Stationary and occluded Training (2008–16) 3 834 054 99.07% } } 0.79% 0.13%
Validation (2017–18) 820 456 98.91% } } 0.96% 0.13%
Test (2019–20) 941 528 98.63% } } 1.21% 0.16%
Training (2008–16) 3 660 657 97.86% 0.93% 0.29% 0.78% 0.13%

All (front/no front) Validation (2017–18) 845 250 97.52% 1.06% 0.34% 0.94% 0.13%
Test (2019–20) 941 528 96.78% 1.40% 0.46% 1.19% 0.16%
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The general structure of our UNet 31 models can be visu-
alized with Fig. 3. The 2D models were designed for images
with sizes of 128 3 128 grid boxes, or 328 3 328, and the 3D
models were designed for images with 128 3 128 3 5 grid
boxes, with the third dimension representing the number of
levels. Six encoder nodes and five decoder nodes were used in
all model architectures. The number of parameters in the
three model structures can be found in Table 4. In each en-
coder node, the images are passed five “modules,” where we
define a module to be a convolution layer followed by a batch

normalization layer and a ReLU activation function layer.
Since convolutions normally reduce the dimensions of the in-
put images, we implemented zero padding in the convolution
layers to preserve the configuration of the images throughout
the models. Zero padding involves padding the borders of an
image such that the output of a convolution layer has the same
dimensionality as the input (O’Shea and Nash 2015). Figure 4
illustrates how image size can be preserved with zero padding.
The images are passed through 64 (16 for 3D) convolution fil-
ters in the convolution layers within the first encoder node,

FIG. 2. Frequency of fronts from 2008 to 2020: (a) cold fronts, (b) warm fronts, (c) stationary fronts, and (d) occluded fronts.

FIG. 3. UNet 31 model for identifying frontal boundaries. Note the number of channels doubling with each subsequent
encoder node and a constant number of channels throughout the decoder nodes.
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and the number of filters doubles with each subsequent en-
coder node. The ReLU activation function is defined as

f (x) 5 x, if x $ 0

0, otherwise
:

{
(1)

The batch normalization layers stabilize the UNet 31 by
keeping the mean of the inputs close to 0 and the standard de-
viation close to 1. After passing through the five modules, the
images undergo downsampling, which involves passing the
images through a max-pooling layer with a pool size of 2 3 2
(2 3 2 3 1 for 3D). The module and downsampling process
repeats throughout the left side of the UNet 31 until reaching
the sixth encoder node at the bottom of the model where the
image size is 4 3 4 (4 3 4 3 5 for 3D). We used a pool size of
2 3 2 3 1 in the 3D max-pooling layers rather than 2 3 2 3 2
because the third dimension of the 3D images that represents
the pressure levels consists of just five pixels, and implement-
ing a 2 3 2 3 2 pool size would result in losing data in the
pressure levels and a UNet 31 with limited depth.

The UNet 31 contains conventional and full-scale skip con-
nections along with aggregated feature maps that help to pre-
serve features lost during the downsampling and upsampling
operations. Conventional skip connections pass the output
from each encoder node through one module, with the convo-
lution layers containing 64 (16 for 3D) filters, and connect it
the respective decoder node on the same level of the UNet
31. Full-scale skip connections connect encoder nodes to de-
coder nodes at lower levels in the model and send the output
from the encoder nodes through max-pooling operations fol-
lowed by one module with the convolution layers containing
64 (16 for 3D) filters. The pool size in the max-pooling opera-
tions in the full-scale skip connections depends on the levels

of the encoder and decoder nodes. Aggregated feature maps
connect the bottom encoder node and decoder nodes to de-
coder nodes located at higher levels on the right side of the
UNet 31. Like full-scale skip connections, these feature maps
pass an image through a module where the convolution layers
contain 64 (16 for 3D) filters, but upsampling is used in place
of max-pooling and the pool size of each upsampling layer is
dependent on the levels of the nodes that are connected to
the feature maps (Huang et al. 2020).

The right side of the UNet 31 contains decoder nodes
where images from the upsampling operations, aggregated
feature maps, and the conventional and full-scale skip connec-
tions are concatenated and sent through five modules. All
convolution layers in the decoder nodes have 384 (96 for 3D)
filters. The output of the sixth encoder node and each decoder
node is passed through a convolution layer with a number of
filters equal to the number of classes for the model, followed
by a Softmax (Bridle 1989) activation function layer. During
training, the outputs of all Softmax layers in the model are
summed to produce a loss value. The Softmax function in the
final decoder node (denoted as De1) will produce an image
with each grid point containing individual probabilities rang-
ing from 0 to 1 for each type of front.

c. Model structure and hyperparameters

Three sets of UNet 31 models were used to detect fron-
tal boundaries}one set predicted cold and warm fronts
(CF/WF), another predicted stationary and occluded
fronts (SF/OF), and the last set predicted any frontal type
by assigning all types the same label such that the model
performs binary classification [front/no front (F/NF)].
These setups were chosen because cold and warm fronts
were used by Lagerquist et al. (2019) and are often re-
lated during the evolution of surface cyclones (Bjerknes
1919), and we believed that limiting the number of classes
to two (excluding the no-front class) would allow the
models to better generalize features associated with each
type of front and avoid the need for class balancing. We
tested three structures for the three sets of models (total
of nine individual models): 2D models with kernel sizes of
3 3 3, 3D models with kernel sizes of 3 3 3 3 3, and 3D
models with kernel sizes of 5 3 5 3 5.

All models were trained with a batch size of 32 and 20
steps per epoch over the CONUS domain. The models
struggled to learn from training over the full unified surface
analysis domain, possibly due to fronts over the ocean hav-
ing different thermodynamic properties than those over
land (see section 3) and the fact that the unified surface
analyses are done every 6 h, whereas WPC and TAFB per-
form analyses over North America every 3 h, leading to a
lower density of fronts outside of the WPC/TAFB domain
that encompasses our CONUS domain (see Figs. 1 and 2).
Validation took place every epoch with a batch size of 32
and 20 steps. The models continued training and validation
until they completed 6000 epochs or reached a point where
the losses did not improve for 1000 epochs, whichever came

TABLE 4. Number of parameters in the three model structures.

Structure No. of parameters

2D: 3 3 3 kernel 268.8 million
3D: 3 3 3 3 3 kernel 50.5 million
3D: 5 3 5 3 5 kernel 233.5 million

FIG. 4. Diagrams of (top) 5 3 5 3 5 convolutions performed on
a 9 3 9 3 9 with no padding and (bottom) 5 3 5 3 5 convolutions
performed on a 53 53 5 image with two layers of zero padding.
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first. The optimizer used was Adam (Kingma and Ba 2014)
with a learning rate of 1 3 1024.

We used the fractions skill score (FSS) as the loss function
for the models. Originally designed by Roberts (2008), FSS
serves as a spatial verification measure that takes into account
surrounding pixels when evaluating a forecast. FSS is defined
by Roberts (2008) as

FSS 5 1 2
FBS

FBSworst
: (2)

FBS is the fractions Brier score, and FBSworst is the worst
possible forecast or the largest possible FBS. FSS is equal
to 1 with a perfect forecast, and a value of 0 indicates that
the model has made the worst possible forecast. Using the
original definitions of FBS and FBSworst, we can write
Eqs. (3)–(6) to represent how FSS is calculated in our
models:

FBS2D 5
1

Nlat

1
Nlon

∑
Nlat

lat
∑
Nlon

lon
[Fpred(lat, lon)

2 Ftrue(lat, lon)]2, (3)

FBS3D 5
1

Nlat

1
Nlon

1
Nz

∑
Nlat

lat
∑
Nlon

lon
∑
Nz

z
[Fpred(lat, lon, z)

2 Ftrue(lat, lon, z)]2, (4)

FBSworst(2D) 5
1

Nlat

1
Nlon

∑
Nlat

lat
∑
Nlon

lon
F2
pred(lat, lon)

[

1 ∑
Nlat

lat
∑
Nlon

lon
F2
true(lat, lon)

]
; and (5)

FBSworst(3D) 5
1

Nlat

1
Nlon

1
Nz

∑
Nlat

lat
∑
Nlon

lon
∑
Nz

z
F2
pred(lat, lon, z)

[

1 ∑
Nlat

lat
∑
Nlon

lon
∑
Nz

z
F2
true(lat, lon, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (6)

To use FSS as a loss function that represents the model’s error
in making predictions, we can use the following formula:

FSSloss 5 1 2 FSS: (7)

Our FSS loss function [Eq. (7)] behaves opposite to that of
the FSS metric [Eq. (2)], so FSSloss will be 0 when the model
makes a perfect forecast and equal to 1 when the worst possible
forecast is made. We used a mask size of 33 3 (75 km3 75 km)
for the 2Dmodels and 33 33 3 (75 km3 75 km3 3 levels) for
the 3D models. Readers are directed to Roberts (2008) and
Ebert-Uphoff et al. (2021) for more information on the FSS loss
function.

d. Evaluation and postprocessing

To evaluate the performance of our models, we first tested
them over both the CONUS and the full domain. The entire

testing set (2019–20) was used during the evaluations over the
CONUS, but only one-half of the dataset covering the synop-
tic hours (0000, 0600, 1200, and 1800 UTC) was used over the
full domain as these are the hours when the unified surface
analyses over the full domain are available. Since the models
output images of size 128 3 128 along the horizontal dimen-
sions, we needed to generate three images for each time step
to cover the 288 3 128 CONUS domain. The process of gen-
erating these predictions varies between the 2D and 3D mod-
els [see more below in section 2d(1)]. For the CF/WF models,
we evaluate the critical success index (CSI, described in more
detail below) of each model and compare it with a baseline
method implemented by Lagerquist et al. (2019) over North
America. We compare our F/NF models with another base-
line method implemented by Niebler et al. (2022) over the
NWS domain. To our knowledge there are no objective NFA
methods for stationary or occluded fronts, so no baselines are
available for either frontal type.

1) CREATING PREDICTIONS

To create our CONUS predictions, the models made three
separate predictions over the domain. The three predictions
were made with extents of 1328–100.258W, 1128–80.258W, and
928–60.258W. The extents of the predictions imply that parts
of the images would overlap one another and a grid point
where two images overlap would see the first image “behind”
the second image, such that the second image would over-
write any data in the first image. To prevent this, the maxi-
mum probability for each frontal type was taken at each grid
point where the images overlapped. This means that if two
images overlap at a particular grid point and the first image
has a probability of 0.80 for a cold front and the second has a
probability of 0.50 for a cold front, the final prediction will
show 0.80 at that grid point for the probability of a cold front.
This procedure also helps to mitigate a well-known issue with
CNNs structure with zero padding; pixels near the edge of an
output image from a model can be unrealistic as the model
can become “confused” by the layers of zeroes surrounding
the input image (Liu et al. 2018). This process was repeated for
the full domain, where 24 images were stitched together to create
the final prediction across the domain. We also evaluated them
over the full domain with 90 images to see if larger overlap be-
tween images would create a prediction with better results. Using
additional images to create a final prediction results in larger over-
lap between the images, and the extra overlap means that pixels
closer to the centers of the images are used to stitch the images to-
gether, helping to alleviate the near-edge issues brought on by
zero padding as described above. For the 3D models we needed
to transform the predictions to a 2D spatial grid before taking the
maximum of overlapping pixels (see above). To turn the 3D pre-
dictions into 2D images, we took the maximum probability of
each frontal type over all pressure levels at every point across the
domain.

2) CSI

After making predictions over the whole CONUS domain
for each available time step, we counted the number of true
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positives (TP), false positives (FP), and false negatives (FN)
associated with each frontal type at probability thresholds
from 0.01 to 1 in steps of 0.01 (0.01, 0.02, 0.03, …, 1) to calcu-
late the CSI (Donaldson et al. 1975) for each frontal type at
each probability threshold. CSI is defined as

CSI 5
TP

TP 1 FP 1 FN
5

1
1

POD
1

1
SR

2 1
, (8)

where POD is the probability of detection and SR is the suc-
cess ratio:

POD 5
TP

TP 1 FN
and (9)

SR 5
TP

TP 1 FP
: (10)

When evaluating the CSI pixel by pixel, any fronts that
the model predicts that are offset from their true loca-
tions will be marked as FP and will bring down the CSI
score. To prevent the model from being penalized for
“close” predictions, we calculated the CSI using 50-, 100-,
150-, 200-, and 250-km neighborhoods. This process is il-
lustrated in Fig. 5.

For each model architecture, we calculated the 95% confi-
dence interval of the CSI for each frontal type at 50, 100, 150,
200, and 250 km at each probability threshold (0.01, 0.02, 0.03,
… , 1) through bootstrapping. We resampled the statistics
with replacement 10 000 times, each time obtaining a set of
performance statistics containing a number of time steps
equal to the number of time steps in each test dataset (5848)
and calculating the probability of detection [POD; Eq. (9)]
and success ratio [SR; Eq. (10)] of each individual time step
(58.48 million total samples). The 2.5th and 97.5th percentiles
were obtained from the POD and SR statistics calculated
from the resampled datasets to obtain the final confidence in-
tervals for each model architecture and frontal type at every
neighborhood and probability threshold.

3) FB

Another metric for assessing model performance is known
as frequency bias (FB), as defined in Eq. (11) below. In an
ideal situation, a value of 1 for FB would be preferred. When
FB is equal to 1, the number of false positives and false nega-
tives are equal, or there is one false positive for every false
negative or missed target. If FB is greater than 1, there are
more false positives than false negatives, and vice versa when
FB is less than 1:

FB 5
TP 1 FP
TP 1 FN

: (11)

3. Results

a. Model performance

The results from the model evaluations across the testing
set (2019–20; see Table 3) are summarized in Tables 5 and 6

and in Fig. 6, Figs. A1–A14 in the appendix, and Figs. S1–S30
in the online supplemental material. We have provided the
figure for 3 3 3 cold-frontal performance over the CONUS in
the results because cold fronts are the most common type of
weather front; the rest of the 3 3 3 figures are provided in the
appendix. Figures for the 3D architectures are provided as on-
line supplemental material because they showed overall weaker
performance than the 2D models. Overall, all models saw CSI
scores increase as the neighborhood grew larger, which was ex-
pected and consistent with the findings of Lagerquist et al.
(2019) and Niebler et al. (2022).

FIG. 5. Comparison of CSI calculation methods. Using the neigh-
borhood technique, the model is not penalized for predicting a front
that is slightly offset from its true location and results in a higher
CSI (TN 5 true negative, TP 5 true positive, FN 5 false negative,
and FP5 false positive).

TABLE 5. The 100-km (first three rows) and 250-km (second
three rows) CSI scores across the CONUS. Boldface numbers
represent the highest CSI score for each frontal type or model type.

Model
architecture Cold Warm Stationary Occluded

Binary
(F/NF)

2D (3 3 3) 0.48 0.30 0.33 0.33 0.51
3D (3 3 3 3 3) 0.35 0.20 0.24 0.19 0.47
3D (5 3 5 3 5) 0.44 0.26 0.30 0.29 0.53
2D (3 3 3) 0.60 0.43 0.48 0.45 0.71
3D (3 3 3 3 3) 0.48 0.32 0.37 0.27 0.66
3D (5 3 5 3 5) 0.55 0.36 0.44 0.39 0.71

ART I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 28

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:45 PM UTC



1) CONUS

The 3D models with 3 3 3 3 3 convolutions performed
worse than the other model architectures over the CONUS
across all frontal types and neighborhoods. This was an unex-
pected finding as the authors anticipated that the 3D convolu-
tions would outperform the 2D convolutions of the same
kernel size. We have two possible explanations for this find-
ing. First, the 3D models with 3 3 3 3 3 kernels had less than
one-fifth of the number of parameters of the 2D models with
3 3 3 kernels (see Table 4). Fewer parameters can introduce
the problem of underfitting, which occurs when a model does

not have enough complexity to describe given sets of data.
Second, the 3 3 3 3 3 kernels only allowed the model to pro-
cess images from three levels at once (e.g., 1000, 950, and
900 hPa), so it seems probable that a much larger dataset is
needed to train the 3D models with 3 3 3 3 3 kernels to
capture more feature variance associated with each frontal
type. Although the 2D models do not process volumetric
data with 3D convolutions, it is possible the large number of
parameters helps the 2D structure outperform the 3D models
with 33 33 3 kernels.

The 2D CF/WF model outperformed the 3D architectures
with cold and warm fronts at all neighborhood sizes. The ver-
tical depth of warm fronts can change by as little as 1 km over
a distance of 100 km (Heymsfield 1979), and cold fronts can
often be identified through wind shifts (Simmonds et al.
2012), so perhaps 3D convolutions processing volumetric data
are not necessary to identify cold or warm fronts. It is possible
that the models struggle to recognize features in the vertical
structure of the shallower warm fronts, but they still show skill
in warm-frontal detection. The small sample size of warm
fronts than of cold fronts (see Table 3) could also explain
warm fronts’ weaker performance relative to cold fronts.

Stationary and occluded fronts saw the best performance
with the 2D 3 3 3 architecture. As mentioned earlier, the
3 3 3 3 3 models performed worse with all frontal types, but

TABLE 6. The 250-km CSI scores across the full domain with
24 images (first three rows) and 90 images (second three rows).
Boldface numbers represent the highest CSI score for each frontal
type.

Model
architecture Cold Warm Stationary Occluded

Binary
(F/NF)

2D (3 3 3) 0.48 0.38 0.27 0.41 0.48
3D (3 3 3 3 3) 0.39 0.29 0.25 0.27 0.55
3D (5 3 5 3 5) 0.50 0.35 0.26 0.30 0.54
2D (3 3 3) 0.49 0.40 0.29 0.42 0.51
3D (3 3 3 3 3) 0.43 0.29 0.26 0.29 0.57
3D (5 3 5 3 5) 0.54 0.37 0.27 0.31 0.56

FIG. 6. (a) CSI diagram (dashed lines 5 frequency bias), (b) reliability diagram (dashed line 5 perfect reliability), (c) data table, and
(d) 250-km CSI map for cold fronts using the 2D CF/WF model with 3 3 3 convolutions over the CONUS. Colored lines in (a) and (b)
correspond to neighborhoods indicated by shaded cells in (c).
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performance was especially low for the 3 3 3 3 3 SF/OF
model. The 250-km CSI scores for stationary and occluded fronts
over the CONUS were 0.37 and 0.27, and the 2D model achieved
scores of 0.48 and 0.45. The smaller convolutions in the 3D 3 3

3 3 3 architecture (as opposed to the 5 3 5 3 5 architecture)
may not be able to reliably extract features in stationary and oc-
cluded fronts, but it is not clear as to why the 3 3 3 3 3 SF/OF
model underperformed to such a degree. These findings are
consistent with results from Niebler et al. (2022), who achieved
CSI scores of 0.45 and 0.49 for stationary and occluded fronts
over the NWS domain when the NWS domain was also used
as the training region for the model. The 250-km CSI scores
for stationary fronts were highest over the Rockies (Fig. A2d
in the appendix and Figs. S3d and S18d in the online
supplemental material), where the frequency of stationary
fronts was highest (Fig. 2c). Occluded fronts performed best
over portions of the United States and Canada just east of the
Rockies (Fig. A3d in the appendix and Figs. S4d and S19d in
the online supplemental material), which makes sense given
that mature cyclones are often seen at these locations follow-
ing lee cyclogenesis (Bannon 1992).

The any fronts setup (F/NF) showed excellent performance
with the 2D 3 3 3 and 3D 5 3 5 3 5 models (Figs. A4a,c in
the appendix and Figs. S20a,c in the online supplemental
material). Performance did not decrease as much with the
3 3 3 3 3 architecture on the F/NF setup as it did with the
individual frontal types in the CF/WF and SF/OF models
(Figs. S1a,c–S5a,c in the online supplemental material). Since
all fronts are given the same label, it is likely that the 3 3 3 3

3 convolutions were able to better capture gradients associ-
ated with the binary fronts than the individual frontal types.
The best F/NF models (3 3 3 and 5 3 5 3 5) both achieved a
CSI score of 0.71 at 250 km across our CONUS domain,
matching the performance of the U-Net used by Niebler et al.
(2022) with a CSI of 0.67 across the NWS domain and outper-
forming the baseline 250-km CSI of 0.22 from Niebler et al.
(2022). The binary-front performance from our models was
relatively consistent across the CONUS domain, with the ex-
ception of the West Coast of the United States.

The 2D 3 3 3 CF/WF architecture achieved a 100-km CSI
score of 0.44 across the CONUS domain. This final CSI score
is heavily biased to cold fronts; warm fronts are far less preva-
lent in the testing data than cold fronts (see Table 3). When
performing evaluations with a 250-km neighborhood, the CSI
score reached 0.57. The small change in CSI scores indicates
that the models derive most of their skill from the smaller
evaluation neighborhoods. Our CF/WF results are consistent
with the findings of Lagerquist et al. (2019) and Niebler et al.
(2022). The CNN used by Lagerquist et al. (2019) to detect
cold and warm fronts achieved an overall CSI score of 0.52 us-
ing a 250-km neighborhood over North America, while the
U-Net used by Niebler et al. (2022) achieved 250-km CSI
scores of 0.56 and 0.37 for cold and warm fronts, respectively.
The CF/WF models drastically outperform the baseline NFA
method used by Lagerquist et al. (2019) over North America
that achieved a 250-km CSI score of 0.23. Cold and warm
fronts both performed worse over the Rockies than other
parts of the CONUS domain. The frequency of cold and

warm fronts over the Rockies is much lower than the rest of
the CONUS domain (Figs. 2a,b), so the CF/WF models may
not have been able to fully capture the structure of fronts
over the Rockies.

Looking at the reliability diagrams for the 2D models (Fig. 6b;
Figs. A1b–A4b in the appendix), it is clear that the 2D models
underpredicted all frontal types across the CONUS. The 3D
models with 3 3 3 3 3 kernels were closer to matching the
forecast probabilities and target frequencies than the 2D models
but tended to overpredict fronts using 50-km neighborhoods with
the exception of stationary fronts (see Figs. S1b–S5b in the
online supplemental material). The 5 3 5 3 5 models suffered
from larger overpredictions than the 3 3 3 3 3 models (see
Figs. S16b–S20b in the online supplemental material), indicat-
ing that incorporating more spatial features into the convolu-
tions via larger kernel sizes may result in greater confidence
and higher probabilities from the models. All of the models
and frontal types had FB values greater than 1 using all neigh-
borhoods and show that a majority of incorrect predictions
from the models are false alarms as opposed to missed fronts.
However, these false alarms can be attributed to inconsisten-
cies within the provided frontal data as Lagerquist et al. (2019)
illustrated howWPC labels can disappear, reappear, or change
type between successive time steps.

2) FULL DOMAIN

All models performed worse over the unified surface do-
main than over the CONUS domain. This was not an unex-
pected result, but we were surprised by the degree to which
the models underperformed over this expanded domain. We
eventually learned from an operational forecaster that fronts
drawn over the ocean outside of the WPC domain often rely
on satellite imagery to be located as observations from ships
and buoys are relatively sparse. Therefore, we believe it is
likely that some of the boundaries plotted over the ocean
based on real-time satellite observations are displaced from
where they would otherwise be identifiable in the ERA5 data;
this could be an explanation for the weaker performance
across the entire unified surface domain. Minimal perfor-
mance increases were observed when the number of images
was increased from 24 to 90 (see Table 6), indicating that the
models are likely not experiencing issues near the edges of
predictions as is commonly observed with CNNs utilizing zero
padding (Liu et al. 2018).

All F/NF model architectures had relatively similar perfor-
mance (Figs. A9a,c and A14a,c in the appendix and Figs. S10a,c,
S15a,c, S25a,c, and S30a,c in the online supplemental
material), but the F/NF model with 3 3 3 3 3 convolution
kernels outperformed the 2D 3 3 3 architecture. Both 3D
architectures achieved 250-km CSI scores that lie within each
other’s 95% confidence intervals while the 5 3 5 3 5 archi-
tecture achieved better performance with smaller neighbor-
hoods. The fact that all fronts are given the same label likely
helped the 3 3 3 3 3 F/NF architecture learn features and
hypergradients associated with all fronts as opposed to indi-
vidual types. The 250-km CSI maps [panel (d) in the perfor-
mance figures (Fig. 6, Figs. A1–A14, and Figs. S1–S30 in the
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online supplemental material)] show that the models were
able to skillfully locate fronts across most of the full domain,
with the lowest scores being north of the Arctic Circle and
west of the Rocky Mountains over the Pacific states and Brit-
ish Columbia, Canada. We initially assumed that low scores
over the full domain were due to the models not performing
well over the oceans, but the models are able to locate fronts
over much of the Atlantic and Pacific Oceans just as well as
the CONUS.

Cold fronts and warm fronts performed best with 3 3 3 and
5 3 5 3 5 convolutions over the full unified surface domain,
as was the case over the CONUS (Figs. A5a,c, A6a,c, A10a,c,
and A11a,c in the appendix and Figs. S6a,c, S7a,c, S11a,c,
S12a,c, S21a,c, S22a,c, S26a,c, and S27a,c in the online
supplemental material). However, the difference in 250-km
CSI between the CONUS and the full domain was much
larger with cold fronts. In an analysis of a cold front over the
eastern Atlantic Ocean, Wakimoto and Murphey (2008)
found a prominent virtual potential temperature gradient uy
across the cold front that was strongest at 2 km above the sur-
face, which contradicts previous studies such as Wakimoto
and Cai (2002) and Sanders (1955) who found that the tem-
perature gradients of cold fronts are maximized at the surface.
The findings from these studies seem to suggest that the verti-
cal structure of a cold front can vary considerably, so the in-
clusion of uy in our list of predictors should be considered,
and perhaps a static land/ocean parameter is needed. Because
850 hPa is our highest pressure level and is typically located at
1.5 km AGL, data at higher pressure levels (e.g., 700 hPa)
could perhaps help to identify features found aloft in mari-
time cold fronts. Wakimoto and Bosart (2001) analyzed ob-
servations of an oceanic warm front and found that it was also
more well defined aloft than at the surface and was character-
ized by sloped uy and uE isopleths, further suggesting that uy
is a thermodynamic variable that should be included in our
list of predictors. Cold and warm fronts both performed
poorly over the Rocky Mountains, the Sierra Madre range,
and north of the Arctic Circle. These regions all had low cold-
and warm-frontal frequencies (Figs. 2a,b). We think that sepa-
rate models trained exclusively over complex terrain and
areas of low frontal frequency could result in better perfor-
mance with cold and warm fronts in these regions.

Stationary fronts performed significantly worse over the full
domain, with false alarm rates near 70% at 250 km (Figs. A7a,c
and A12a,c in the appendix and Figs. S8a,c, S13a,c, S23a,c, and
S28a,c in the online supplemental material). We discovered that
the models tend to identify the intertropical convergence zone
(ITCZ) as a large stationary front, leading to an exceptionally
large number of false positives. We believe the wind convergence
associated with the ITCZ causes the model to misinterpret the
ITCZ as a stationary front. Since the domain used for model
training did not include the ITCZ, the models were inherently bi-
ased to put a greater emphasis on wind convergence to identify
stationary fronts, perhaps implying that we need to model delin-
eation between the tropics and the midlatitudes. Similar to binary
fronts, the stationary-front performance was highest over areas
of the Rocky Mountains, northwestern Canada, Alaska, and the
Sierra Madre in Mexico. The CSI maxima over the Sierra Madre

and the Rocky Mountains show that the SF/OF models are able
to identify stationary fronts over mountainous terrain.

Occluded-front performance decreased considerably with
the 3 3 3 and 5 3 5 3 5 architectures but did not decrease
much with the 33 33 3 architecture as it located more fronts
but had a higher false alarm rate (Figs. A8a,c and A13a,c in
the appendix and Figs. S9a,c, S14a,c, S24a,c, and S29a,c in the
online supplemental material). The models seemed to strug-
gle in properly identifying occluded fronts that were inter-
preted by forecasters to be wrapped around the center of
mature cyclones (see Fig. 3f from Reed and Albright 1997).
When the models located occluded fronts, the sections of the
fronts highlighted were usually attached to the triple point
where the occluded fronts intersected with the cyclones’ re-
spective cold and warm fronts; occluded fronts may not be as
easily detectable near the triple point due to mixed features
over short distances within the convolutions. With the excep-
tion of the western Pacific, there were no local maximums in
occluded-front CSI scores that stood out as having clear sig-
nificance. Occluded fronts are the rarest frontal type in our
datasets (see Table 3), so it seems probable that the models
struggled to fully learn the vertical structure of occluded
fronts. We think that more training or including all frontal
types in one singular model may improve occluded-front per-
formance, especially over areas where these boundaries are
frequently analyzed by forecasters.

b. Variable importance

Variable importance was determined by performing permu-
tation studies (Lakshmanan et al. 2015; McGovern et al. 2019)
with the 3D models structured with 5 3 5 3 5 convolution
kernels using the 200-km boundary. Despite the 2D models
performing slightly better, we performed the permutation
studies on the best-performing 3D models since we believe
that the 3D structure that processes volumetric images has the
most potential to be improved upon for better reliability in de-
tecting fronts. Two types of permutations were performed}
individual permutations and grouped permutations.

Individual permutations involve running evaluations with a
model while randomizing the values of one predictor per eval-
uation. Since 60 variables were used in the models, 60 evalua-
tions were performed with all models, and one variable was
randomized for every run. If a variable is to be deemed
“important” for detecting fronts, a drop in the CSI will be ob-
served when its values are randomized. Likewise, a variable
that does not help the model detect fronts will cause the CSI
to increase when its values are randomized.

Grouped permutations are similar to individual permuta-
tions, except that multiple predictors are randomized per run
as opposed to just one. A total of 12 runs were performed,
with each run having 1 of the 12 variables randomized at the
five levels (see Table 1). For example, when temperature data
are randomized, all temperature data at the surface and at
1000, 950, 900, and 850 hPa are randomized at the same time.
The grouped permutation method allowed us to visualize
overall variable importance as opposed to assigning impor-
tance based on the level where the data reside.
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Results from grouped and individual permutations can be
viewed in Table 7 as well as in Table A1 of the appendix. Sur-
face pressure, geopotential height, u wind, and y wind were
consistently ranked as some of the most important variables
for front detection. In other words, randomizing these varia-
bles resulted in the largest drops in the 200-km CSI scores.
Frontal boundaries are commonly associated with pressure
troughs (Berry et al. 2011), thus it was unsurprising to see sur-
face pressure and geopotential height to be prioritized by the
model for detecting fronts. 10-m wind components were ex-
ceptionally important in identifying cold fronts, which is con-
sistent with findings from Simmonds et al. (2012) who showed
that wind shift method was successful in locating cold fronts
and contrasted by lower importance for warm fronts. Varia-
bles such as uw, used by Berry et al. (2011), and uE, used by
Schemm et al. (2015), showed little utility in detecting frontal
boundaries with the UNet 31 models. This was an unex-
pected finding but could be a result of the collinearity that ex-
ists between the numerous thermodynamic variables we
included as inputs to the models. Geopotential height showed
to be particularly important in the detection of occluded
fronts, which was expected as the vertical stacking of geopo-
tential heights can indicate the presence of an occluded front
in a mature cyclone. Nearly half of the variables in the indi-
vidual and grouped permutations showed to have negative ef-
fects in the detection of stationary fronts, so it is possible that
stationary fronts can be detected with fewer variables than
the other frontal types. Interestingly, using the binary setup
(front/no front), the most important variable in the individual
permutation studies was relative humidity at 2 m AGL. Given
that all frontal types are being identified with the same label
in the binary setup, the authors believe that the 5 3 5 3 5 F/
NF model placed a greater emphasis on thermal gradients in-
stead of wind shifts and leading to relative humidity becoming
an important variable in frontal detection. However, relative
humidity had a negative effect on the model in the grouped
permutation studies, suggesting that relative humidity may
only be useful at certain pressure levels. Wet-bulb tem-
perature and specific humidity had almost no effect on the
performance with any frontal type in grouped permuta-
tions, with the possible exception being occluded fronts.

c. Case studies

We chose two case studies, one over the CONUS and the
other over the full unified surface analysis domain, to highlight
some of the differences and similarities between the human-
drawn fronts and predictions from the 53 53 5 models.

Case 1 can be viewed in Figs. 7 and 8. This study was
chosen for two reasons; the corridors of higher probabilities
indicated by the SF/OF and F/NF models of an apparent
stationary front extending from southeastern New Mexico
northwestward into western Colorado and Utah, and a warm
front drawn over western Indiana that was determined by the
CF/WF model to most likely exist up to 200 mi (3001 km) to
the northeast of its analyzed location.

As highlighted in Table 7, u wind and y wind are two of the
three most important variables for detecting stationary fronts
and also play a role in identifying fronts with the binary F/NF
model. Wind convergence at the 900-hPa level is indicated by
wind barbs along the corridors of probabilities from the
SF/OF and F/NF models near the Four Corners region where
no boundary was analyzed by forecasters (Fig. 7), and the
ERA5 data also show wind convergence at the surface along
these same corridors. However, there does not appear to be
wind convergence at the surface when looking at surface ob-
servations from ASOS stations, possibly explaining the lack
of an analyzed stationary front in the Four Corners region.

The warm front over Indiana was not identified by the
CF/WF nor the F/NF model, but a possible warm front was
found over eastern Michigan. The ERA5 data did not show
any prominent wind shift or gradients of temperature, dew-
point, or virtual temperature at the locations of both the ana-
lyzed warm front and the warm front predicted by the CF/WF
model. These variables were determined to be important for
detecting warm fronts (see Table 7 and appendix). However,
a weak trough in geopotential heights at the 950- and 900-hPa
levels exists to the northeast of the predicted warm front,
which suggests the presence of a boundary (Berry et al. 2011).

Case 2 (Figs. 9 and 10) highlights model predictions over
the full unified surface analysis domain. The SF/OF model
identifies much of the ITCZ as a stationary front, leading to
significantly lower CSI scores over the full domain as mentioned

TABLE 7. Grouped variable importance by frontal type, ranked from 1 to 12 with 1 and 12 being the most and least important
variables, respectively. Cells with numbers in boldface or italics indicate that the variables respectively helped or diminished
performance of the respective frontal type.

Variable Cold Warm Stationary Occluded Binary (F/NF)

Dewpoint 6 6 6 11 11
Equivalent potential temperature 8 9 11 6 4
Geopotential height 1 pressure 3 1 1 1 2
Mixing ratio 10 10 5 7 7
Relative humidity 6 6 4 7 12
Specific humidity 10 10 6 9 7
Temperature 4 5 6 4 1
u wind 1 3 3 3 6
y wind 2 2 2 2 3
Virtual temperature 4 4 11 5 4
Wet-bulb potential temperature 9 8 10 12 7
Wet-bulb temperature 12 10 6 9 7
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in section 3a (model performance). The CF/WF model showed
cold-front probabilities exceeding 90% extending south of an
analyzed warm front over the central Atlantic Ocean, though
there was not a strong thermal gradient associated with the
model’s prediction. However, a pressure trough is present over
the area of the highest cold-front probabilities, which is consis-
tent with results from our permutation studies that showed
pressure variables along with u wind and y wind being the most
important variables for detecting cold fronts (see Table 7
and appendix). The CF/WF model also suggested the analyzed
warm front over the central Atlantic Ocean is a cold front, but we
attribute this to be an issue with the model prioritizing wind over
any thermal variable as a clear temperature gradient exists along
the warm front and supports the forecasters’ interpretation of this
boundary. The SF/OF model shows good skill in detecting oc-
cluded fronts near the center of mature cyclones. The F/NF
model was able to identify nearly all boundaries that were plotted
by the forecasters with high probabilities, highlighting the F/NF
model’s ability to generalize the thermal gradients, wind shifts,
and pressure troughs that are present with the four frontal types.

We also noticed some fronts that seemed to be either missed
or mislabeled by the forecasters, including an area highlighted by
the CF/WF model south of the Aleutian Islands with probabili-
ties exceeding 80% for the existence of a warm front. This area
had a baroclinic trough analyzed in the region where a warm
front is indicated by the CF/WF model. This baroclinic trough is
not shown in Fig. 10 but the surface analysis for this time step
can be found in the WPC surface analysis archive. Since troughs
are not included in any of the models, it seems probable that the
models were overpredicting the existence of fronts where baro-
clinic troughs have been analyzed by forecasters. Baroclinic

troughs have sharp wind shifts but do not have prominent ther-
mal gradients (Sanders 1999); the models are likely too depen-
dent on u wind and y wind when predicting the locations of
fronts as they lack knowledge of the existence of troughs.

4. Discussion and future work

Our deep learning models were shown to be effective at de-
tecting cold, warm, stationary, and occluded fronts and signifi-
cantly outperformed prior baseline methods that aimed to
objectively locate frontal boundaries. We demonstrated that
both the 2D 3 3 3 and 3D 5 3 5 3 5 architectures are able to
generalize properties associated with different frontal types
over the CONUS and the unified surface analysis domain.

We cannot conclude that any of the three structures used
(2D with 33 3 kernels, 3D with 3 3 33 3 kernels, or 3D with
5 3 5 3 5 kernels) is the superior model structure for detect-
ing fronts. Overall, we noticed that performance with a partic-
ular frontal type was positively correlated to its sample size
(see Table 3 for sample sizes among the datasets), so manipu-
lating class weights and other model parameters may be nec-
essary to account for the varying sample sizes.

Pressure variables, u wind, and y wind consistently rank
among the most important variables for detecting fronts and
are supported by previous studies and frontal detection meth-
ods (Berry et al. 2011; Payer et al. 2011; Schemm et al. 2015;
Simmonds et al. 2012; Schultz 2005). With the exception of
stationary fronts, temperature and virtual temperature were
the thermodynamic variables that showed the most utility
with identifying different frontal types after pressure. Models
appear to place too much emphasis on locating fronts with

FIG. 7. Case 1 withWPC fronts plotted on top of 900-hPa uE and wind barbs for 2100 UTC 21 Nov 2019.

J U S T I N E T A L . 13JULY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:45 PM UTC



wind shifts and do not rely enough on thermal gradients, re-
sulting in many baroclinic troughs being misinterpreted as
frontal boundaries by the models (see case 2). The depen-
dence on u wind and y wind likely explains why many thermal

variables do not have a substantial effect on the models’ pre-
dictions. We believe that training the models to also identify
baroclinic troughs will help limit the models’ tendencies to
identify frontal boundaries without thermal gradients.

FIG. 9. Case 2 with unified surface analysis fronts plotted on 900-hPa uE and wind barbs for 1800 UTC 14 Mar 2019.

FIG. 8. Case-1 model predictions over the CONUS for 2100 UTC 21 Nov 2019 using the 5 3 5 3 5 (top left) WF/WF, (top right) SF/OF,
and (bottom) F/NF models. The fronts analyzed by the forecasters (solid lines) are plotted on top of model predictions (contours).
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Proper calibration of our models is needed so that the fore-
cast probabilities are consistent with the actual frequencies of
the different frontal types. This can be achieved through vari-
ous forms of regression and will give forecasters confidence
that the probabilities output by the models are accurate repre-
sentations of how often fronts have been historically analyzed
with similar sets of data. Calibration will need to be per-
formed individually with each neighborhood so that the prob-
abilities closely resemble the frequency of fronts located
within the given neighborhoods.

In future work, we will improve upon our models by includ-
ing data from higher pressure levels, with a particular focus
on 700-hPa data. This should help the models locate more
frontal boundaries at higher elevations in the Rocky Moun-
tains and other regions of complex terrain. Our future experi-
ments will also exclude variables that have been highlighted
in this paper as having a net-negative or net-zero effect on
identifying specific types of boundaries.

To make more accurate classifications of the different frontal
types, another direction of future exploration will be a set of
models that predict the four frontal types examined in this
paper–cold, warm, stationary, and occluded. Since any of our
current models can only identify up to two frontal types at
once, one model set that can identify all four types may help
reduce the number of fronts that are labeled incorrectly as a
result of insufficient labels to ensure class discrimination. It is
possible that an entirely separate set of models will be needed
to identify oceanic fronts as they may have different thermo-
dynamic properties than those over land.

To assess the efficacy and utility of these models, we con-
ducted interviews with forecasters from WPC, OPC, and TAFB
on the 3D models with 5 3 5 3 5 kernels. The forecasters had
overwhelmingly positive reactions to the models’ predictions in
relation to the fronts from the unified surface analyses. Ongoing
work is exploring the evaluation of the utility of the frontal analy-
sis first-guess tool by WPC, OPC, and TAFB forecasters through
the use of a web-based interface.

We are working to validate the performance of our
U-Nets using data from the Global Forecast System (GFS)
and Global Data Assimilation System (GDAS). These were
chosen because NOAA’s operational forecasters use them
in real time in the NAWIPS system to assist in locating sur-
face boundaries. In our preliminary tests, the deep learning mod-
els appeared to locate frontal boundaries with GFS and GDAS
data with similar degrees of accuracy as ERA5 data at the same
time steps on which the U-Nets were tested. Our preliminary re-
sults give us confidence that operational forecasters can use our
models as another tool to expedite the frontal analysis process.
Aiding this transition, the models can simply be stored on a local
machine and run using Python code from our GitHub repository
(https://github.com/ai2es/fronts).
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ported by the National Science Foundation under Grant
ICER-2019758. This material is also based upon work sup-
ported by the National Oceanic and Atmospheric Adminis-
tration under Grant NA20OAR4590347. We thank the
OPC, WPC, and TAFB forecasters who have assisted us in

FIG. 10. Case-2 model predictions over the CONUS for 1800 UTC 14 Mar 2019 using the 5 3 5 3 5 (top left) CF/WF, (top right) SF/OF,
and (bottom) F/NF models. The fronts analyzed by the forecasters (solid lines) are plotted on top of model predictions (contours).
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APPENDIX

Additional Results

Table A1 is similar to Table 7 but shows the ranking of
importance for variables by frontal type for individual permu-
tations. The appendix figures show performance diagrams for
2D models with 3 3 3 convolutions. Figures A1–A4 apply
to the CONUS domain and have three images per map.
Figures A5–A9 apply to the full domain and have 24 im-
ages per map. Figures A10–A14 apply to the full domain
and have 90 images per map.
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TABLE A1. As in Table 7, but for individual permutations.

Variable Cold Warm Stationary Occluded Binary (F/NF)

Dewpoint (2 m AGL) 43 52 18 47 17
Dewpoint (1000 hPa) 28 29 42 50 32
Dewpoint (950 hPa) 21 12 48 50 25
Dewpoint (900 hPa) 24 12 52 29 25
Dewpoint (850 hPa) 25 16 30 39 32
Equivalent potential temperature (2 m AGL) 41 39 42 29 25
Equivalent potential temperature (1000 hPa) 32 39 52 16 4
Equivalent potential temperature (950 hPa) 35 33 51 20 8
Equivalent potential temperature (900 hPa) 32 48 42 13 13
Equivalent potential temperature (850 hPa) 37 46 27 20 20
Surface pressure 2 39 3 7 2
Geopotential height (1000 hPa) 38 15 11 8 40
Geopotential height (950 hPa) 7 2 2 1 3
Geopotential height (900 hPa) 3 1 1 1 4
Geopotential height (850 hPa) 15 9 6 3 20
Mixing ratio (2 m AGL) 38 16 40 29 20
Mixing ratio (1000 hPa) 43 33 30 28 32
Mixing ratio (950 hPa) 48 33 17 29 47
Mixing ratio (900 hPa) 57 48 13 24 52
Mixing ratio (850 hPa) 57 56 27 29 50
Relative humidity (2 m AGL) 10 10 7 4 1
Relative humidity (1000 hPa) 12 5 13 16 7
Relative humidity (950 hPa) 55 24 22 29 9
Relative humidity (900 hPa) 49 29 30 54 12
Relative humidity (850 hPa) 41 59 19 10 25
Specific humidity (2 m AGL) 43 24 36 39 13
Specific humidity (1000 hPa) 28 16 36 39 16
Specific humidity (950 hPa) 43 33 22 39 25
Specific humidity (900 hPa) 59 60 15 29 36
Specific humidity (850 hPa) 60 52 19 24 51
Temperature (2 m AGL) 28 52 54 50 52
Temperature (1000 hPa) 15 52 58 20 55
Temperature (950 hPa) 9 24 59 13 47
Temperature (900 hPa) 17 22 56 13 25
Temperature (850 hPa) 25 33 48 20 36
u wind (10 m AGL) 18 19 40 58 13
u wind (1000 hPa) 5 14 42 60 9
u wind (950 hPa) 1 4 15 59 4
u wind (900 hPa) 4 6 10 29 9
u wind (850 hPa) 10 11 11 16 25
y wind (10 m AGL) 55 6 22 24 58
y wind (1000 hPa) 6 3 8 9 57
y wind (950 hPa) 8 8 4 4 36
y wind (900 hPa) 20 33 5 4 40
y wind (850 hPa) 25 56 9 10 46
Virtual temperature (2 m AGL) 32 48 52 39 54
Virtual temperature (1000 hPa) 13 48 57 24 59
Virtual temperature (950 hPa) 13 22 59 16 60
Virtual temperature (900 hPa) 19 24 55 10 56
Virtual temperature (850 hPa) 21 29 42 29 47
Wet-bulb potential temperature (2 m AGL) 38 56 36 47 40
Wet-bulb potential temperature (1000 hPa) 23 44 50 50 40
Wet-bulb potential temperature (950 hPa) 28 20 34 54 40
Wet-bulb potential temperature (900 hPa) 35 21 27 56 40
Wet-bulb potential temperature (850 hPa) 43 39 22 56 36
Wet-bulb temperature (2 m AGL) 49 29 19 47 32
Wet-bulb temperature (1000 hPa) 49 24 22 39 20
Wet-bulb temperature (950 hPa) 49 39 30 39 20
Wet-bulb temperature (900 hPa) 49 46 36 29 17
Wet-bulb temperature (850 hPa) 49 44 34 39 17
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FIG. A1. As in Fig. 6, but for warm fronts.

FIG. A2. As in Fig. 6, but for stationary fronts with the 2D SF/OF model with 33 3 convolutions.
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FIG. A3. As in Fig. A2, but for occluded fronts.

FIG. A4. As in Fig. A2, but for the 2D F/NF model with 33 3 convolutions.
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FIG. A5. As in Fig. 6, but over the full domain with 24 images covering the domain.

FIG. A6. As in Fig. A5, but for warm fronts.
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FIG. A7. As in Fig. A5, but for stationary fronts with the 2D SF/OF model with 33 3 convolutions.

FIG. A8. As in Fig. A7, but for occluded fronts.
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FIG. A9. As in Fig. A7, but for the 2D F/NF model with 33 3 convolutions.

FIG. A10. As in Fig. A5, but with 90 images covering the domain.
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FIG. A11. As in Fig. A10, but for warm fronts.

FIG. A12. As in Fig. A10, but for stationary fronts with the 2D SF/OF model with 33 3 convolutions.
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FIG. A13. As in Fig. A12, but for occluded fronts.

FIG. A14. As in Fig. A12, but for the 2D F/NF model with 33 3 convolutions.
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